مخفف SVM
Support Vector Machines
30
ماشین بردار پشتیبانی (SVMs) یکی از روشهای یادگیری با نظارت است که از آن برای طبقهبندی و رگرسیون استفاده میکنند.
این روش از جملهٔ روشهای نسبتاً جدیدی است که در سالهای اخیر کارایی خوبی نسبت به روشهای قدیمیتر برای طبقهبندی از جمله شبکههای عصبی پرسپترون نشان داده است. مبنای کاری دستهبندی کنندۀ SVM دستهبندی خطی دادهها است و در تقسیم خطی دادهها سعی میکنیم خطی را انتخاب کنیم که حاشیه اطمینان بیشتری داشته باشد. حل معادله پیدا کردن خط بهینه برای دادهها به وسیله روشهای QP که روشهای شناخته شدهای در حل مسائل محدودیتدار هستند صورت میگیرد. قبل از تقسیمِ خطی برای اینکه ماشین بتواند دادههای با پیچیدگی بالا را دستهبندی کند دادهها را به وسیلهٔ تابعِ phi به فضای با ابعاد خیلی بالاتر میبریم. برای اینکه بتوانیم مسئله ابعاد خیلی بالا را با استفاده از این روشها حل کنیم از قضیه دوگانی لاگرانژ برای تبدیلِ مسئلهٔ مینیممسازی مورد نظر به فرم دوگانی آن که در آن به جای تابع پیچیدهٔ phi که ما را به فضایی با ابعاد بالا میبرد، تابعِ سادهتری به نامِ تابع هسته که ضرب برداری تابع phi است ظاهر میشود استفاده میکنیم. از توابع هسته مختلفی از جمله هستههای نمایی، چندجملهای و سیگموید میتوان استفاده نمود.
الگوریتم SVM، جز الگوریتمهای تشخیص الگو دستهبندی میشود.از الگوریتم SVM، در هر جایی که نیاز به تشخیص الگو یا دستهبندی اشیا در کلاسهای خاص باشد میتوان استفاده کرد.در ادامه به کاربردهای این الگوریتم به صورت موردی اشاره میشود:
سیستم آنالیز ریسک، کنترل هواپیما بدون خلبان، ردیابی انحراف هواپیما، شبیهسازی مسیر، سیستم راهنمایی اتوماتیک اتومبیل، سیستمهای بازرسی کیفیت، آنالیز کیفیت جوشکاری، پیشبینی کیفیت، آنالیز کیفیت کامپیوتر، آنالیز عملیاتهای آسیاب، آنالیز طراحی محصول شیمیایی، آنالیز نگهداری ماشین، پیشنهاد پروژه، مدیریت و برنامهریزی، کنترل سیستم فرایند شیمیایی و دینامیکی، طراحی اعضای مصنوعی، بهینهسازی زمان پیوند اعضا، کاهش هزینه بیمارستان، بهبود کیفیت بیمارستان، آزمایش اتاق اورژانس، اکتشاف روغن و گاز، کنترل مسیر در دستگاههای خودکار، ربات، جراثقال، سیستمهای بصری، تشخیص صدا، اختصار سخن، کلاسه بندی صوتی، آنالیز بازار، سیستمهای مشاورهای محاسبه هزینه موجودی، اختصار اطلاعات و تصاویر، خدمات اطلاعاتی اتوماتیک، مترجم لحظهای زبان، سیستمهای پردازش وجه مشتری، سیستمهای تشخیص ترمز کامیون، زمانبندی وسیله نقلیه، سیستمهای مسیریابی، کلاسه بندی نمودارهای مشتری/بازار، تشخیص دارو، بازبینی امضا، تخمین ریسک وام، شناسایی طیفی، ارزیابی سرمایه، کلاسه بندی انواع سلولها، میکروبها و نمونهها، پیشبینی فروشهای آینده، پیشبینی نیازهای محصول، پیشبینی وضعیت بازار، پیشبینی شاخصهای اقتصادی، پیشبینی ملزومات انرژی، پیشبینی واکنشهای دارویی، پیشبینی بازتاب محصولات شیمیایی، پیشبینی هوا، پیشبینی محصول، پیشبینی ریسک محیطی، پیشبینی جداول داوری، مدل کردن کنترل فرایند، آنالیز فعالیت گارانتی، بازرسی اسناد، تشخیص هدف، تشخیص چهره، انواع جدید سنسورها، دستگاه کاشف زیر دریایی به وسیلهٔ امواج صوتی، رادار، پردازش سیگنالهای تصویری شامل مقایسه اطلاعات، پیگیری هدف، هدایت جنگ افزارها، تعیین قیمت وضعیت فعلی، جلوگیری از پارازیت، شناسایی تصویر /سیگنال، چیدمان یک مدار کامل، بینایی ماشین، مدل کردن غیر خطی، ترکیب صدا، کنترل فرایند ساخت، آنالیز مالی، پیشبینی فرایندهای تولید، ارزیابی بکارگیری یک سیاست، بهینهسازی محصول، تشخیص ماشین و فرایند، مدل کردن کنترل سیستمها، مدل کردن ساختارهای شیمیایی، مدل کردن سیستمهای دینامیکی، مدل کردن سیگنال تراکم، مدل کردن قالبسازی پلاستیکی، مدیریت قراردادهای سهام، مدیریت وجوه بیمه، دیریت سهام، تصویب چک بانکی، اکتشاف تقلب در کارت اعتباری، ثبت نسیه، بازبینی امضا از چکها، پیشبینی ارزش نسیه، مدیریت ریسک رهن، تشخیص حروف و اعدا، تشخیص بیماری و.....
ارسال نظراین روش از جملهٔ روشهای نسبتاً جدیدی است که در سالهای اخیر کارایی خوبی نسبت به روشهای قدیمیتر برای طبقهبندی از جمله شبکههای عصبی پرسپترون نشان داده است. مبنای کاری دستهبندی کنندۀ SVM دستهبندی خطی دادهها است و در تقسیم خطی دادهها سعی میکنیم خطی را انتخاب کنیم که حاشیه اطمینان بیشتری داشته باشد. حل معادله پیدا کردن خط بهینه برای دادهها به وسیله روشهای QP که روشهای شناخته شدهای در حل مسائل محدودیتدار هستند صورت میگیرد. قبل از تقسیمِ خطی برای اینکه ماشین بتواند دادههای با پیچیدگی بالا را دستهبندی کند دادهها را به وسیلهٔ تابعِ phi به فضای با ابعاد خیلی بالاتر میبریم. برای اینکه بتوانیم مسئله ابعاد خیلی بالا را با استفاده از این روشها حل کنیم از قضیه دوگانی لاگرانژ برای تبدیلِ مسئلهٔ مینیممسازی مورد نظر به فرم دوگانی آن که در آن به جای تابع پیچیدهٔ phi که ما را به فضایی با ابعاد بالا میبرد، تابعِ سادهتری به نامِ تابع هسته که ضرب برداری تابع phi است ظاهر میشود استفاده میکنیم. از توابع هسته مختلفی از جمله هستههای نمایی، چندجملهای و سیگموید میتوان استفاده نمود.
الگوریتم SVM، جز الگوریتمهای تشخیص الگو دستهبندی میشود.از الگوریتم SVM، در هر جایی که نیاز به تشخیص الگو یا دستهبندی اشیا در کلاسهای خاص باشد میتوان استفاده کرد.در ادامه به کاربردهای این الگوریتم به صورت موردی اشاره میشود:
سیستم آنالیز ریسک، کنترل هواپیما بدون خلبان، ردیابی انحراف هواپیما، شبیهسازی مسیر، سیستم راهنمایی اتوماتیک اتومبیل، سیستمهای بازرسی کیفیت، آنالیز کیفیت جوشکاری، پیشبینی کیفیت، آنالیز کیفیت کامپیوتر، آنالیز عملیاتهای آسیاب، آنالیز طراحی محصول شیمیایی، آنالیز نگهداری ماشین، پیشنهاد پروژه، مدیریت و برنامهریزی، کنترل سیستم فرایند شیمیایی و دینامیکی، طراحی اعضای مصنوعی، بهینهسازی زمان پیوند اعضا، کاهش هزینه بیمارستان، بهبود کیفیت بیمارستان، آزمایش اتاق اورژانس، اکتشاف روغن و گاز، کنترل مسیر در دستگاههای خودکار، ربات، جراثقال، سیستمهای بصری، تشخیص صدا، اختصار سخن، کلاسه بندی صوتی، آنالیز بازار، سیستمهای مشاورهای محاسبه هزینه موجودی، اختصار اطلاعات و تصاویر، خدمات اطلاعاتی اتوماتیک، مترجم لحظهای زبان، سیستمهای پردازش وجه مشتری، سیستمهای تشخیص ترمز کامیون، زمانبندی وسیله نقلیه، سیستمهای مسیریابی، کلاسه بندی نمودارهای مشتری/بازار، تشخیص دارو، بازبینی امضا، تخمین ریسک وام، شناسایی طیفی، ارزیابی سرمایه، کلاسه بندی انواع سلولها، میکروبها و نمونهها، پیشبینی فروشهای آینده، پیشبینی نیازهای محصول، پیشبینی وضعیت بازار، پیشبینی شاخصهای اقتصادی، پیشبینی ملزومات انرژی، پیشبینی واکنشهای دارویی، پیشبینی بازتاب محصولات شیمیایی، پیشبینی هوا، پیشبینی محصول، پیشبینی ریسک محیطی، پیشبینی جداول داوری، مدل کردن کنترل فرایند، آنالیز فعالیت گارانتی، بازرسی اسناد، تشخیص هدف، تشخیص چهره، انواع جدید سنسورها، دستگاه کاشف زیر دریایی به وسیلهٔ امواج صوتی، رادار، پردازش سیگنالهای تصویری شامل مقایسه اطلاعات، پیگیری هدف، هدایت جنگ افزارها، تعیین قیمت وضعیت فعلی، جلوگیری از پارازیت، شناسایی تصویر /سیگنال، چیدمان یک مدار کامل، بینایی ماشین، مدل کردن غیر خطی، ترکیب صدا، کنترل فرایند ساخت، آنالیز مالی، پیشبینی فرایندهای تولید، ارزیابی بکارگیری یک سیاست، بهینهسازی محصول، تشخیص ماشین و فرایند، مدل کردن کنترل سیستمها، مدل کردن ساختارهای شیمیایی، مدل کردن سیستمهای دینامیکی، مدل کردن سیگنال تراکم، مدل کردن قالبسازی پلاستیکی، مدیریت قراردادهای سهام، مدیریت وجوه بیمه، دیریت سهام، تصویب چک بانکی، اکتشاف تقلب در کارت اعتباری، ثبت نسیه، بازبینی امضا از چکها، پیشبینی ارزش نسیه، مدیریت ریسک رهن، تشخیص حروف و اعدا، تشخیص بیماری و.....